1 Any patient who fails to turn up for an outpatient appointment at a hospital is described as a 'no-show'. At a particular hospital, on average $15 \%$ of patients are no-shows. A random sample of 20 patients who have outpatient appointments is selected.
(i) Find the probability that
(A) there is exactly 1 no-show in the sample,
(B) there are at least 2 no-shows in the sample.

The hospital management introduces a policy of telephoning patients before appointments. It is hoped that this will reduce the proportion of no-shows. In order to check this, a random sample of $n$ patients is selected. The number of no-shows in the sample is recorded and a hypothesis test is carried out at the $5 \%$ level.
(ii) Write down suitable null and alternative hypotheses for the test. Give a reason for your choice of alternative hypothesis.
(iii) In the case that $n=20$ and the number of no-shows in the sample is 1 , carry out the test.
(iv) In another case, where $n$ is large, the number of no-shows in the sample is 6 and the critical value for the test is 8 . Complete the test.
(v) In the case that $n \leqslant 18$, explain why there is no point in carrying out the test at the $5 \%$ level.

2 Mark is playing solitaire on his computer. The probability that he wins a game is 0.2 , independently of all other games that he plays.
(i) Find the expected number of wins in 12 games.
(ii) Find the probability that
(A) he wins exactly 2 out of the next 12 games that he plays,
(B) he wins at least 2 out of the next 12 games that he plays.
(iii) Mark's friend Ali also plays solitaire. Ali claims that he is better at winning games than Mark. In a random sample of 20 games played by Ali, he wins 7 of them. Write down suitable hypotheses for a test at the $5 \%$ level to investigate whether Ali is correct. Give a reason for your choice of alternative hypothesis. Carry out the test.

3 A manufacturer produces tiles. On average $10 \%$ of the tiles produced are faulty. Faulty tiles occur randomly and independently.

A random sample of 18 tiles is selected.
(i) (A) Find the probability that there are exactly 2 faulty tiles in the sample.
(B) Find the probability that there are more than 2 faulty tiles in the sample.
(C) Find the expected number of faulty tiles in the sample.

A cheaper way of producing the tiles is introduced. The manufacturer believes that this may increase the proportion of faulty tiles. In order to check this, a random sample of 18 tiles produced using the cheaper process is selected and a hypothesis test is carried out.
(ii) (A) Write down suitable null and alternative hypotheses for the test.
(B) Explain why the alternative hypothesis has the form that it does.
(iii) Find the critical region for the test at the $5 \%$ level, showing all of your calculations.
(iv) In fact there are 4 faulty tiles in the sample. Complete the test, stating your conclusion clearly.

